SUPERSYMMETRY, PART II (EXPERIMENT)

Written September 2013 by O. Buchmueller (Imperial College London) and P. de Jong (Nikhef).

- II.1. Introduction
- II.2. Experimental search program
- II.3. Interpretation of results
- II.4. Exclusion limits on gluino and squark masses
 - II.4.1 Exclusion limits on the gluino mass
 - II.4.2. Exclusion limits on first and second generation squark masses
 - II.4.3. Exclusion limits on third generation squark masses
- II.5. Exclusion limits on masses of charginos and neutralinos
 - II.5.1. Exclusion limits on chargino masses
 - II.5.2. Exclusion limits on neutralino masses
- II.6. Exclusion limits on slepton masses
 - II.6.1. Exclusion limits on the masses of charged sleptons
 - II.6.2. Exclusion limits on sneutrino masses
- II.7. Global interpretations
- II.8. Summary and Outlook

II.1. Introduction

Supersymmetry (SUSY), a transformation relating fermions to bosons and vice versa [1–9], is one of the most compelling possible extensions of the Standard Model of particle physics (SM), and a leading contender for a new principle about nature that could be discovered at high-energy colliders such as the Large Hadron Collider (LHC).

On theoretical grounds SUSY is motivated as a generalization of space-time symmetries. A low-energy realization of SUSY, *i.e.*, SUSY at the TeV scale, is, however, not a necessary consequence. Instead, low-energy SUSY is motivated by the possible cancellation of quadratic divergences in radiative corrections to the Higgs boson mass [10–15]. Furthermore, it is intriguing that a weakly interacting, (meta)stable supersymmetric particle might make up some or all of the dark matter in the universe [16–18]. In addition, SUSY predicts that gauge couplings, as measured experimentally at the electroweak scale, unify at an energy scale $\mathcal{O}(10^{16}) \text{GeV}$ ("GUT scale") near the Planck scale [19–25].

In the minimal supersymmetric extension to the Standard Model, the so called MSSM [26,27,11], a supersymmetry transformation relates every fermion and gauge boson in the SM to a supersymmetric partner with half a unit of spin difference, but otherwise with the same properties and quantum numbers. These are the "sfermions": squarks and sleptons, and the "gauginos". The MSSM Higgs sector contains two doublets, for up-type quarks and for down-type quarks and charged leptons respectively, and the partners of the Higgs doublets are known as "higgsinos." The charged weak gauginos and higgsinos mix to "charginos," and the neutral ones mix to "neutralinos." The fact that such particles are not yet observed leads to the conclusion that, if supersymmetry is realized, it is a broken symmetry. A description of SUSY in the form of an effective Lagrangian with only "soft" SUSY-breaking terms and SUSY masses at the TeV scale maintains cancellation of quadratic divergences in particle physics models.

The phenomenology of SUSY is to a large extent determined by the SUSY-breaking mechanism and the SUSYbreaking scale. This determines the SUSY particle masses, the mass hierarchy, the field contents of physical particles, and their decay modes. In addition, phenomenology crucially depends on whether the multiplicative quantum number of R-parity [27], $R = (-1)^{3(B-L)+2S}$, where B and L are baryon and lepton numbers and S is the spin, is conserved or violated. If R-parity is conserved, SUSY particles, which have odd R-parity, are produced in pairs and the decays of each SUSY particle must involve an odd number of lighter SUSY particles. The lightest SUSY particle (LSP) is then stable and often assumed to be a weakly interacting massive particle (WIMP). If R-parity is violated, new terms λ_{ijk} , λ'_{ijk} and λ''_{ijk} appear in the superpotential, where ijk are generation indices; λ -type couplings appear between lepton superfields only, λ'' -type are between quark superfields only, and λ' -type couplings connect the two. R-parity violation implies lepton and/or baryon number violation. More details of the theoretical framework of SUSY are discussed elsewhere in this volume [28].

Today low-energy data from flavor physics experiments, high-precision electroweak observables as well as astrophysical data impose strong constraints on the allowed SUSY parameter space. Examples of such data include measurements of precision electroweak observables, of the anomalous magnetic moment of the muon and of the cosmological dark matter relic density, as well as limits on rare B-meson and K-meson decays, on electric dipole moments, on proton decay, and on WIMP-nucleon scattering cross sections. These indirect constraints are often more sensitive to higher SUSY mass scales than experiments searching for direct SUSY particle (sparticle) production at colliders, but the interpretation of these results are often strongly model dependent. In contrast, direct searches for sparticle production at collider experiments are much less subject to interpretation ambiguities and therefore they play a crucial role in the discovery strategy for SUSY.

The SUSY Higgs sector is covered elsewhere in this volume [29]. The discovery of a new scalar boson with a mass

around 126 GeV compatible with a Higgs boson imposes constraints on SUSY, which are discussed elsewhere [28,29].

In the rest of this review we limit ourselves to direct searches, covering data analyses at LEP, HERA, the Tevatron and the LHC. With the advent of the LHC, the experimental situation is changing rapidly. Compared to earlier PDG reviews, more emphasis is given to LHC results; for more details on LEP and Tevatron constraints, see earlier PDG reviews [30].

II.2. Experimental search program

The electron-positron collider LEP was operational at CERN between 1989 and 2000. In the initial phase, center-of-mass energies around the Z-peak were probed, but after 1995 the LEP experiments collected a significant amount of luminosity at higher center-of-mass energies, some 235 pb⁻¹ per experiment at $\sqrt{s} \ge 204$ GeV, with a maximum \sqrt{s} of 209 GeV.

Searches for new physics at e^+e^- colliders benefit from the clean experimental environment and the fact that momentum balance can be measured not only in the plane transverse to the beam, but also in the direction along the beam (up to the beam pipe holes), the longitudinal direction. Searches at LEP are dominated by the data samples taken at the highest center-of-mass energies.

Significant constraints on SUSY have been set by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at a center-of-mass energy of up to 1.96 TeV. CDF and D0 have collected integrated luminosities between 10 and 11 ${\rm fb}^{-1}$ each up to the end of collider operations in 2011.

The electron-proton collider HERA provided collisions to the H1 and ZEUS experiments between 1992 and 2007, at a center-of-mass energy up to 318 GeV. A total integrated luminosity of approximately $0.5~{\rm fb^{-1}}$ has been collected by each experiment. Since in ep collisions no annihilation process takes place, SUSY searches at HERA typically look for R-parity violating production of single SUSY particles.

The landscape of SUSY searches, however, has significantly changed since the Large Hadron Collider (LHC) at CERN has started proton-proton operation at a center-of-mass energy of 7 TeV in 2010. By the end of 2011 the experiments CMS and

ATLAS had collected about 5 fb⁻¹ of integrated luminosity each, and the LHCb experiment had collected approximately 1 fb⁻¹. In 2012, the LHC operated at a center-of-mass energy of 8 TeV, and CMS and ATLAS collected approximately 20 fb⁻¹ each, whereas LHCb collected 2 fb⁻¹.

Proton-(anti)proton colliders produce interactions at higher center-of-mass energies than those available at LEP, and cross sections of QCD-mediated processes are larger, which is reflected in the higher sensitivity for SUSY particles carrying color charge: squarks and gluinos. Large backgrounds, however, pose challenges to trigger and analysis. Such backgrounds are dominated by multijet production processes, including, particularly at the LHC, those of top quark production, as well as jet production in association with vector bosons. The proton momentum is shared between its parton constituents, and in each collision only a fraction of the total center-of-mass energy is available in the hard parton-parton scattering. Since the parton momenta in the longitudinal direction are not known on an event-by-event basis, momentum conservation is restricted to the transverse plane, leading to the use in the experimental analyses of transverse variables, such as the missing transverse momentum, and the transverse mass. Proton-proton collisions at the LHC differ from proton-antiproton collisions at the Tevatron in the sense that there are no valence anti-quarks in the proton, and that gluon-initiated processes play a more dominant role. The increased center-of-mass energy of the LHC compared to the Tevatron significantly extends the kinematic reach for SUSY searches. This is reflected foremost in the sensitivity for squarks and gluinos, but also for other SUSY particles.

The main production mechanisms of massive colored sparticles at hadron colliders are squark-squark, squark-gluino and gluino-gluino production; when "squark" is used "antisquark" is also implied. The typical SUSY search signature at hadron colliders contains high- $p_{\rm T}$ jets, which are produced in the decay chains of heavy squarks and gluinos, and significant missing momentum originating from the two lightest supersymmetric particles (LSP) produced at the end of the decay chain. Assuming R-parity conservation, the LSPs are neutral and

weakly interacting massive particles which escape detection. Backgrounds to such searches arise from multijet events with real missing momentum, dominated by heavy flavor decays, but also from instrumental effects in multijet events such as nonuniform calorimeter response or jet mismeasurement. Selection variables designed to separate the SUSY signal from the backgrounds include $H_{\mathrm{T}},~E_{\mathrm{T}}^{\mathrm{miss}}$ and $m_{\mathrm{eff}}.$ The quantities H_{T} and $E_{\rm T}^{\rm miss}$ refer to the measured energy and missing transverse momentum in the event, respectively. They are usually defined as the scalar $(H_{\rm T})$ and negative vector sum $E_{\rm T}^{\rm miss}$ of the transverse jet energies or transverse calorimeter clusters energies measured in the event. The quantity m_{eff} is referred to as the effective mass of the event and is defined as $m_{\text{eff}} = H_{\text{T}} + |E_{\text{T}}^{\text{miss}}|$. The peak of the $m_{\rm eff}$ distribution for SUSY signal events correlates with the SUSY mass scale, in particular with the mass difference between the primary produced SUSY particle and the LSP [31]. Additional reduction of multijet backgrounds can be achieved by demanding isolated leptons, multileptons or photons in the final states.

In the past few years alternative approaches have been developed to increase the sensitivity to pair production of heavy sparticles with masses around 1 TeV focusing on the kinematics of their decays, and to further suppress the background from multijet production. Prominent examples of these new approaches are searches using the $\alpha_{\rm T}$ [32–34], razor [35], stransverse mass $(m_{\rm T2})$ [36], and contransverse mass $(m_{\rm CT})$ [37] variables.

II.3. Interpretation of results

Since the mechanism by which SUSY is broken is unknown, a general approach to SUSY via the most general soft SUSY breaking Lagrangian adds a significant number of new free parameters. For the minimal supersymmetric standard model, MSSM, *i.e.*, the model with the minimal particle content, these comprise 105 new parameters. A phenomenological analysis of SUSY searches leaving all these parameters free is not feasible. For the practical interpretation of SUSY searches at colliders several approaches are taken to reduce the number of free parameters.

One approach is to assume a SUSY breaking mechanism and lower the number of free parameters through the assumption of additional constraints. In particular in past years, interpretations of experimental results were predominately performed in constrained models of gravity mediated [38,39], mediated [40,41], and anomaly mediated [42,43] SUSY breaking. Before the start of the LHC and even during its first year of operation, the most popular model for interpretation of collider based SUSY searches was the constrained MSSM (CMSSM) [38,44,45], which in the literature is also referred to as minimal supergravity, or MSUGRA. The CMSSM is described by five parameters: the common sfermion mass m_0 , the common gaugino mass $m_{1/2}$, and the common trilinear coupling parameter A_0 , all expressed at the GUT scale, the ratio of the vacuum expectation values of the Higgs fields for up-type and down-type fermions $\tan \beta$, and the sign of the Higgsino mass parameter μ . In gauge mediation models, the paradigm of general gauge mediation (GGM) [46] is slowly replacing minimal gauge mediation, denoted traditionally as GMSB (gauge mediated SUSY breaking).

These constrained SUSY models are theoretically well motivated and provide a rich spectrum of experimental signatures. Therefore, they represent a useful framework to benchmark performance, compare limits or reaches and assess the expected sensitivity of different search strategies. However, with universality relations imposed on the soft SUSY-breaking parameters, they do not cover all possible kinematic signatures and mass

relations of SUSY. For this reason the squarks are often nearly degenerate in mass and thus the exclusion of parameter space in this class of very constrained SUSY model is mainly driven by first and second generation squark production as well as gluino production.

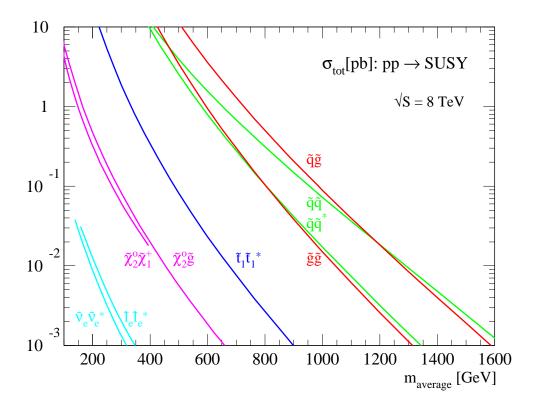


Figure 1: Cross sections for the pair-production of different sparticles as function of their mass at the LHC for a centre-of-mass energy of 8 TeV [47]. Typically the production cross section of coloured squarks and gluinos is several orders of magnitude larger then then one for leptons or charginos. Expect for the explicitly shown pair production of stops, production cross sections for squarks assumes mass degenerancy of left- and right-handed u, d, s, c and b squarks.

As shown in Fig. 1 [47] these processes possess the largest production cross sections in proton-proton collisions, and thus the LHC searches are typically providing the tightest mass limits on these coloured sparticles. This, however, implies that

the parameter space of constrained SUSY models today has been severely constrained by searches from ATLAS and CMS. Furthermore, confronting this still allowed parameter space with other collider and non-collider measurements, which are directly or indirectly sensitive to contributions from SUSY, the overall compatibility of these models with all data is significantly worse than in the pre-LHC era (see section II.7 for further discussion), indicating that very constrained models like the CMSSM might no longer be good benchmark scenarios to solely characterise the results of SUSY searches at the LHC.

For these reason, an effort has been made in the past years to complement the traditional constrained models with more flexible interpretation approaches.

One answer to study a broader and more comprehensive subset of the MSSM is via the phenomenological-MSSM, or pMSSM [48–50]. It is derived from the MSSM, using experimental data to eliminate parameters that are free in principle but have already been highly constrained by measurements of e.g., flavor mixing and CP-violation. This effective approach reduces the number of free parameters in the MSSM to 19, making it a practical compromise between the full MSSM and highly constrained universality models such as the CMSSM.

Even less dependent on fundamental assumptions are interpretations in terms of so-called simplified models [51–54]. Such models assume a limited set of SUSY particle production and decay modes and leave open the possibility to vary masses and other parameters freely. Therefore, simplified models enable comprehensive studies of individual SUSY topologies without limitations on fundamental kinematic properties such as masses, production cross sections, and decay modes. In consequence, after 2011 ATLAS and CMS have adopted simplified models as the primary framework to provide interpretations of their searches. Today, almost every individual search provides interpretations of their results in one or even several simplified models that are characteristic for SUSY topologies probed by the analysis.

However, while these models are very convenient for the interpretation of individual SUSY production and decay topologies, care must be taken when applying these limits to more complex SUSY spectra. A complete SUSY spectrum as e.g. defined by SUSY models like the CMSSM exhibits not only one but typically many different SUSY topologies. Therefore, to apply simplified model limits to an arbitrary SUSY spectrum requires in principle limits of all relevant production and decay topologies to be considered. These, however, are not always all available or only approximated, and combining these to obtain the limit for a given spectrum is not always straightforward. Therefore, in practise, simplified model limits are often used as an approximation of the constraints that can placed on sparticle masses in more complex SUSY spectra. Depending on the assumed SUSY spectrum, the sparticle of interest, and the considered simplify model limit, this approximation can lead to a significant mistake, typically an overestimation, in the assumed constraint on the sparticle mass (see for example [55]). Only on a case-by-case basis can it be determined whether the limit of a given simplified model represents a good approximation of the true underlying constraint that can be applied on a sparticle mass in a complex SUSY spectrum. In the following, we will always point out explicitly the assumptions that have entered the limits when quoting interpretations from simplified models.

In the past three years of LHC operation, the landscape of SUSY searches and corresponding interpretations has rapidly evolved and to this day still continues to change. This review covers results up to September 2013 and since none of the searches performed so far have shown significant excess above the SM background prediction, the interpretation of the presented results are exclusion limits on SUSY parameter space.

II.4. Exclusion limits on gluino and squark masses

Gluinos and squarks are the SUSY partners of gluons and quarks, and thus carry color charge. Although limits on squark masses of the order 100 GeV have been set by the LEP experiments, due to the coloured production of this particles (see e.g. Fig. 1) hadron collider experiments are able to set much tighter mass limits.

Today, the results of the LHC experiments dominate the search for direct squark and gluino production. Pair production of these massive colored sparticles at hadron colliders generally involve both s-channel and t-channel parton-parton interactions. Since there is a negligible amount of bottom and top quark content in the proton, top- and bottom squark production proceeds through s-channel diagrams only with small cross sections. In the past experimental analyses of squark and/or gluino production typically assumed the first and second generation squarks to be approximately degenerate in mass. However, in order to have even less model dependent interpretation of the searches, the experiments have started to also provide simplified model limits on individual first or second generation squarks.

Assuming R-parity conservation, squarks will predominantly decay to a quark and a neutralino or chargino, if kinematically allowed. Other decay modes depend on the masses of the weak gauginos and may involve heavier neutralinos or charginos. For first and second generation squarks, the simplest decay modes involve two jets and missing momentum, with potential extra jets stemming from initial state radiation (ISR) or from decay modes with longer cascades. Similarly, gluino pair production leads to four jets and missing momentum, and possibly additional jets from ISR or cascades. Associated production of a gluino and a (anti)squark is also possible, in particular if squarks and gluinos have similar masses, typically leading to three or more jets in the final state. In cascades, isolated photons or leptons may appear from the decays of sparticles such as neutralinos or charginos. Final states are thus characterized by significant missing transverse momentum, and at least two, and possibly many more high $p_{\rm T}$ jets, which can be accompanied by one or more isolated objects like photons or leptons, including τ leptons, in the final state. Table 1 shows a schematic overview of characteristic final state signatures of gluino and squark production for different mass hierarchy assumptions.

Table 1: Typical search signatures at hadron colliders for direct gluino and first- and second-generation squark production assuming different mass hierarchies.

Mass	Main	Dominant	Typical	
Hierarchy	Production	Decay	Signature	
$\overline{m_{\tilde{q}} << m_{\tilde{g}}}$	$ ilde{q} ilde{q}, ilde{q}ar{ ilde{q}}$	$\tilde{q} \to q \tilde{\chi}_1^0$	$\geq 2 \text{ jets} + E_{\text{T}}^{\text{miss}} + X$	
$m_{\tilde{q}} pprox m_{\tilde{g}}$	$ ilde{q} ilde{g}, ar{ ilde{q}} ilde{g}$	$\tilde{q} \to q \tilde{\chi}_1^0$	$\geq 3 \text{ jets} + E_{\text{T}}^{\text{miss}} + X$	
		$\tilde{g} \to q \bar{q} \tilde{\chi}_1^0$		
$m_{\tilde{q}} >> m_{\tilde{g}}$	$\widetilde{g}\widetilde{g}$	$\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$	$\geq 4 \text{ jets} + E_{\text{T}}^{\text{miss}} + X$	

II.4.1 Exclusion limits on the gluino mass

Limits set by the Tevatron experiments on the gluino mass assume the framework of the CMSSM, with $\tan \beta = 5$ (CDF) or $\tan \beta = 3$ (D0), $A_0 = 0$ and $\mu < 0$, and amount to lower limits of about 310 GeV for all squark masses, or 390 GeV for the case $m_{\tilde{q}} = m_{\tilde{g}}$ [56,57]. Already during the first year of physics operation of the LHC in 2010, these limits have been superseded by those provided by ATLAS and CMS.

Today, limits on the gluino mass have been set using up to approximately 20 fb⁻¹ of data recorded at a centreof-mass energy of 8 TeV. As shown in Fig. 2, the ATLAS collaboration places limits for several searches in the framework of the CMSSM, assuming $\tan \beta = 30$, $A_0 = -2m_0$, and $\mu > 0$. For low m_0 the inclusive all-hadronic search considering two to six jets [58] provides the most stringent limit, while for values of m_0 above ≈ 1600 GeV a more dedicated search [59] requiring zero or one isolated lepton accompanied with at least three jets identified to originate from bottom quarks (b-jets) takes over. The limits at low m_0 are mainly driven by squarkgluino and squark-squark production and at high m_0 gluino pair production dominates. As also indicated in Fig. 1, all other particle production modes do not play a significant role for limits in the CMSSM. In this constrained model gluino masses below around 1300 GeV [59] are excluded by the ATLAS collaboration for all squark masses, while for equal squark and gluino masses, the limit is about 1700 GeV [58]. The CMS collaboration has not yet provided an interpretation of their 8 TeV in the CMSSM but based on the performance reported for simplified models it is expected that the performances is similar to the one shown in Fig. 2.

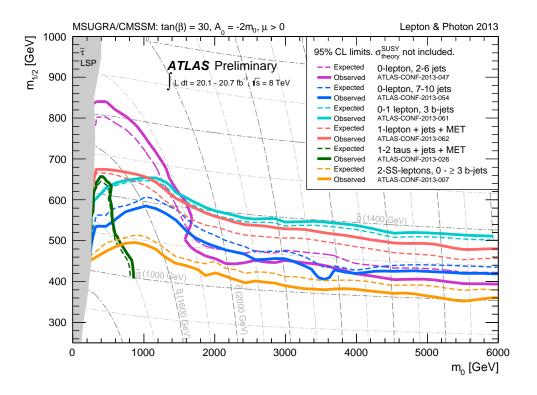


Figure 2: Limits, at 95% C.L., derived from several different ATLAS searches on the CMSSM parameters m_0 and $m_{1/2}$, assuming $\tan \beta = 30$, $A_0 = -2m_0$ and $\mu > 0$.

Limits on the gluino mass have also been established in the framework of simplified models. Assuming only gluino pair production, in particular three primary decay chains of the gluino have been considered by the LHC experiments for interpretations of their search results. The first decay chain $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$ assumes gluino mediated production of first and second generation squarks which leads to four light flavour quarks in the final state. Therefore, inclusive all-hadronic analyses searching for multijet plus $E_{\rm T}^{\rm miss}$ final states are utilised to put limits on this simplified model. These limits are derived as a function of the gluino and neutralino (LSP) mass. As shown in

Fig. 3 (left), using the cross section from next to leading order QCD corrections and the resummation of soft gluon emission at next-to-leading-logarithmic accuracy as reference, the CMS collaboration [60] excludes in this simplified model gluino masses below ≈ 1200 GeV, for a massless neutralino. In scenarios where neutralinos are not very light, the efficiency of analyses is reduced by the fact that jets are less energetic, and there is less missing transverse momentum in the event. This leads to weaker limits when the mass difference $\Delta m = m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$ is reduced. For example, for neutralino masses above ≈ 450 GeV no general limit on the gluino mass can be set for this decay chain. Therefore, limits on gluino masses are strongly affected by the assumption of the neutralino mass. Similar results for this simplified model have been obtained by ATLAS [58].

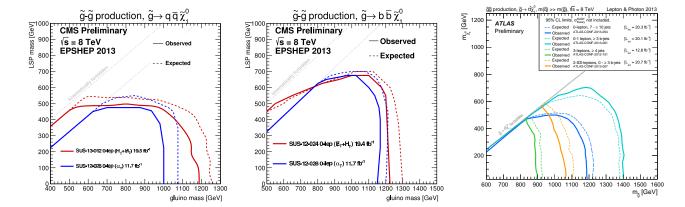


Figure 3: Upper limits, at 95% C.L., on the cross section of gluino pair production for the decay chains $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$ (left), $\tilde{g} \to b\bar{b}\tilde{\chi}_1^0$ (middle), and $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ (right). The limits are defined in the framework of simplified models assuming a single decay chain, (i.e. 100% branching fraction). The left and middle plot show limits from the CMS collaboration, while the displayed limits for $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$ are obtained from ATLAS searches of $\tilde{g} \to q\bar{q}\tilde{\chi}_1^0$.

The second important decay chain of the gluino considered for interpretation in a simplified model is $\tilde{g} \to b\bar{b}\tilde{\chi}^0_1$. Here the decay is mediated via bottom squarks and thus leads to four jets from b quarks and $E^{\rm miss}_{\rm T}$ in the final state. Also for this

topology inclusive all-hadronic searches provide the highest sensitivity. However, with four b quarks in the final state, the use of secondary vertex reconstruction for the identification of jets originating from b quarks provides a powerful handle on the SM background. Therefore, in addition to a multijet plus $E_{\rm T}^{\rm miss}$ signature these searches also require several jets to be tagged as b-jets. As shown in Fig. 3 (middle), for this simplified model CMS [61] excludes gluino masses below \approx 1200 GeV for a massless neutralino, while for neutralino masses above \approx 650 GeV no general limit on the gluino mass can be set anymore. Comparable limits for this simplified model are provided by a search from ATLAS [59].

Not only first and second generation squarks or bottom squarks may be the product of gluino decays but also, if kinematically allowed, top squarks via the decay $\tilde{g} \to t\bar{t}$. This leads to a "four tops" final state $tttt\tilde{\chi}_1^0\tilde{\chi}_1^0$ and defines the third important simplified model, $\tilde{g} \to t\bar{t}\tilde{\chi}^0_1$, characterising gluon pair production. The experimental topology of this decay is with as many as four isolated leptons, four b-jets, several light flavour quark jets, and significant missing momentum from the neutrinos in the W decay and the two neutralinos very rich on different experimental signatures. Therefore, in contrast to the other two simplified models, dedicated searches optimised for the this particular final state provide the best mass limit on the gluino for this simplified model. As shown in Fig. 3 (right), the ATLAS search [59] requiring significant $E_{\mathrm{T}}^{\mathrm{miss}}$ zero or one isolated lepton, and at least three jets identified as b-jets provides the strongest limit on the gluino mass. At 95% C.L. it rules out a gluino mass below ≈ 1400 GeV for $m_{\tilde{\chi}_1^0} < 100 \text{ GeV}$ and for neutralino masses above $\approx 700 \text{ GeV}$, no limit can be placed anymore on the gluino mass for this simplified model. A CMS search [62] also especially optimised for this decay topology by requiring one isolated lepton and high jet multiplicity obtains similar limits.

When comparing the limits in Fig. 3 for the three different simplified models it becomes apparent that more parameter space can be excluded when the gluino decay chain is mediated via third generation squarks. The reason for this is the better

control of the SM background by means of identification of b-jets as well as dedicated topology requirements like high jet multiplicity or isolated leptons for these special signatures. However, this variation in sensitivity of the searches for different gluino decay chains is also a clear indication that care must be taken when limits from these simplified models are applied to SUSY models possessing more complex underlying spectra.

If the gluino decay is suppressed, for example if squark masses are high, gluinos may live longer than typical hadronization times. It is expected that such gluinos will hadronize to semi-stable strongly interacting particles known as R-hadrons. Searches for R-hadrons exploit the typical signature of stable charged massive particles in the detector. As shown in Fig. 4, the CMS experiment excludes semi-stable gluino R-hadrons with masses below approximately 1.3 TeV [63]. The limits depend on the probability for gluinos to form bound states known as gluinoballs, as these are neutral and not observed in the tracking detectors. Similar limits are obtained by the ATLAS experiment [64].

Alternatively, since such R-hadrons are strongly interacting, they may be stopped in the calorimeter or in other material, and decay later into energetic jets. These decays are searched for by identifying the jets outside the time window associated with bunch-bunch collisions [65–67]. As shown in Fig. 5, the latests ATLAS analysis [66] based on the full 2011 and 2012 data set combined (28 fb $^{-1}$) places limits at 95% C.L. on gluino production over almost 16 orders of magnitude in gluino lifetime. For $m_{\tilde{\chi}_1^0} > 100$ GeV, assuming a 100% branching fraction for gluino decay to gluon (or $q\bar{q}$) + neutralino, gluinos with lifetimes from 10 $\mu{\rm s}$ to 1000 s and $m_{\tilde{g}} < 857$ GeV are excluded. When SUSY spectra are compressed, this limits weakens to $m_{\tilde{g}} < 572$ GeV for $m_{\tilde{g}} - m_{\tilde{\chi}_1^0} < 100$ GeV .

In summary, for interpretations in CMSSM, simplified models, and semi-stable R-hadrons, the best limits on the gluino mass range from around 1200 GeV to about 1400 GeV, while for interpretations in the context of stopped R-hadrons the limit on $m_{\tilde{g}}$ is around 850 GeV. All these limits weaken significantly for compressed SUSY spectra when the mass difference $m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$

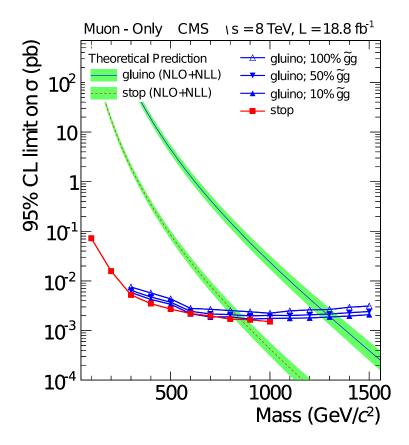


Figure 4: Observed 95% C.L. upper limits on the cross section for (semi-)stable top squarks or gluinos. For gluinos, different fractions of gluinoball states produced after hadronization scenarios are indicated. The observed limits are compared with the predicted theoretical cross sections where the bands represent the theoretical uncertainties on the cross section values.

is reduced; even to a point where for gluino masses below 1 TeV no limit can be placed anymore.

Further discussion about the limits of gluinos and how they compare with limits on other sparticles is given in the section "Summary of exclusion limits on squarks and gluinos assuming R-parity conservation".

R-parity violating gluino decays are searched for in multijet final states without missing transverse momentum. CDF [68], ATLAS [69] and CMS [70] put limits on the cross section for such decays.

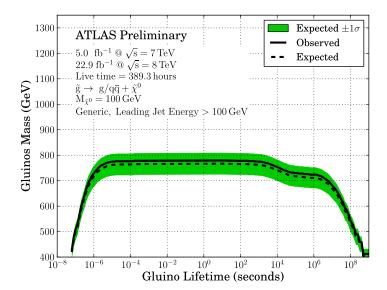


Figure 5: 95% C.L. lower limit on gluino mass versus gluino lifetime, for the signal region defined by requiring the leading jet energy to be above 100 GeV. An 800 GeV gluino in the generic R-hadron model decaying to a gluon or $q\bar{q}$ pairs and a 100 GeV neutralino is used as a reference for the stopping fraction and reconstruction efficiency.

II.4.2. Exclusion limits on first and second generation squark masses

Limits on first and second generation squark masses set by the Tevatron experiments assume the CMSSM model, and amount to lower limits of about 380 GeV for all gluino masses, or 390 GeV for the case $m_{\tilde{q}} = m_{\tilde{q}}$ [56,57].

At the LHC, limits on squark masses have been set using up to approximately 20 fb⁻¹ of data at 8 TeV. As shown in Fig. 2, the ATLAS collaboration [58] excludes in the framework of the CMSSM squark masses below ≈ 1600 GeV for all gluino masses. For equal squark and gluino masses, the limit is about ≈ 1700 GeV.

Interpretations in simplified models are characterizing squark pair production with only one decay chain of $\tilde{q} \to q \tilde{\chi}^0_1$. Here it is assumed that the left and right-handed u,d,s,c squarks are degenerate in mass. Furthermore, it is assumed that the

mass of the gluino is very high and thus contributions of the corresponding t-channel diagrams to squark pair production are negligible. Therefore, the total production cross section for this simplified model is eight times the production cross section of an individual squark (e.g. u_L). The CMS collaboration provides interpretations of two all-hadronic searches [60,71] for this simplified model. As displayed in Fig. 6, best observed exclusion of squark masses is just below 800 GeV for a light neutralino. The effects of heavy neutralinos on squark limits are similar to those discussed in the gluino case (see section "Exclusion limits on the gluino mass") and only for neutralino masses below $\approx 300 \text{ GeV}$ masses of can be excluded. Above this neutralino mass and assuming an eightfold mass degeneracy of the first and second generation squarks, CMS cannot place limits on generic squark pair production. Results from the ATLAS collaboration [58] are very similar.

However, if the assumption of mass degenerate fist and second generation squarks is dropped and only the production of a single light squark is assumed, the limits weaken significantly. This is shown as the much smaller exclusion region in Fig. 6, which represents the 95% C.L. upper limit of pair production of a single light squark, with the gluino and all other squarks decoupled to very high masses. With a best observed limit of only $\approx 450 \text{ GeV}$ for a massless neutralinos and a neutralino mass of ≈ 100 GeV above which no limit can be placed anymore, the exclusion reach of the LHC experiments for single light squark is rather weak. It should be noted that this limit is not a result of a simple scaling of the above mentioned mass limits assuming eightfold mass degeneracy but it also takes into account that for an eight times lower production cross section the analyses must probe kinematic regions of phase space that are closer to the ones of SM background production. Since signal acceptance and the ratio of expected signal to SM background events of the analyses are typically worse in this region of phase space not only the 1/8 reduction in production cross section but also a worse analysis sensitivity are responsible for the much weaker limit on single squark pair production.

In summary, in the CMSSM where squarks are near degenerate in mass, the exclusion is mainly driven by squark-gluino and squark-squark production and with 20 fb⁻¹ of data at 8 TeV squark masses below ≈ 1600 GeV are excluded. For the direct production of first and second generation squark pairs, each of which is assumed to decay to a quark of the same flavour and the neutralino, masses below 800 GeV are excluded for massless neutralinos under the assumption of an eightfold mass-degeneracy. The most constraining mass limit on the neutralino is ≈ 300 GeV. These limit weaken to only 450 GeV for squarks and ≈ 100 GeV for neutralinos, if only a single squark is assumed to be light.

Further discussion about the limits of light flavour squarks and how they compare with limits on other sparticles is given in section "Summary of exclusion limits on squarks and gluinos assuming R-Parity conservation".

R-parity violating production of single squarks via a λ' -type coupling has been studied at HERA. In such models, a lower limit on the squark mass of the order of 275 GeV has been set for electromagnetic-strength-like couplings $\lambda' = 0.3$ [72].

II.4.3. Exclusion limits on third generation squark masses

TeV-scale SUSY is often motivated by naturalness arguments, most notably as a solution to stabilize quadratic divergences in radiative corrections to the Higgs boson mass. In this context, the most relevant terms for SUSY phenomenology arise from the interplay between the masses of the third generation squarks and the (large) Yukawa coupling of the top quark to the Higgs boson. This motivates a potential constraint on the masses of the top squarks and the left-handed bottom squark. Due to the large top quark mass, significant mixing between \tilde{t}_L and \tilde{t}_R is expected, leading to a lighter mass state \tilde{t}_1 and a heavier mass state \tilde{t}_2 . In much of MSSM parameter space, the lightest top squark (\tilde{t}_1) is also the lightest squark.

The discovery of a Higgs boson at a mass around 126 GeV has consequences for third generation squarks in the MSSM, which are discussed elsewhere [28]. As a consequence, and in the absence of a SUSY discovery so far, searches for third

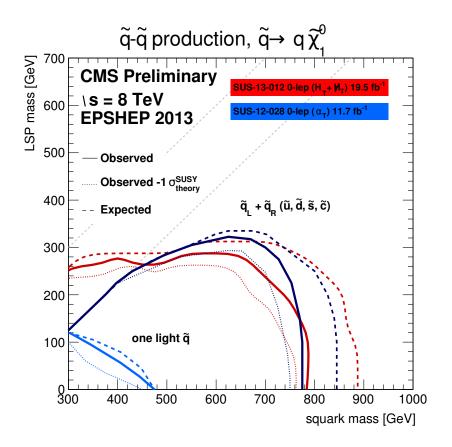


Figure 6: 95% C.L. exclusion contours in the squark-neutralino mass plane defined in the framework of simplified models assuming a single decay chain of $\tilde{q} \to q \tilde{\chi}_1^0$. Two assumptions for the squark pair production cross sections are displayed; a) eightfold degeneracy for the masses of the first and second generation squarks (red and dark blue contours) and b) only one light flavour squark (light blue contours). For the α_T based CMS analysis [71](light and dark blue contours), the diagonal part of $m_{\tilde{q}} - m_{\tilde{\chi}_1^0} < 200$ GeV is not directly kinematically accessible and therefore no limit is provided. The other CMS analysis [60] limit contours) shown in this plot provides a limit beyond this mass difference by allowing significant contributions from signal events with hard ISR jets in the interpretation of the result.

generation squark production have become a major focus of the SUSY search programme at the LHC. For this reason direct- and gluino mediated top and/or bottom squark production processes, leading to experimental signatures that are rich in jets originating from bottom quarks, are either subject of re-interpretation of inclusive analyses or targets for dedicated third generation squark searches. The later ones have become especially important for searches of direct top squark production.

Direct production of top and bottom squark pairs at hadron colliders is suppressed with respect to first generation squarks, due to the absence of t and b quarks in the proton (see e.g. the example of direct top squark production in Fig. 1). At the LHC, assuming eightfold mass degeneracy for light flavour squarks as reference, this suppression is at the level of two orders of magnitude for top and bottom squark masses of around 600 GeV. Moreover, at the LHC, there is a very large background of top quark pair production, making especially the experimental analysis of top squark pair production a challenge.

Bottom squarks are expected to decay predominantly to $b\tilde{\chi}^0$ giving raise to the characteristic multi b-jet and $E_{\rm T}^{\rm miss}$ signature. Direct production of bottom squark pairs has been studied at the Tevatron and at the LHC. Limits from the Tevatron are $m_{\tilde{b}} > 247$ GeV for a massless neutralino [73,74](see also Fig. 7). Already in 2011 the LHC experiments have surpassed these limits and based on the full 2012 data set, as shown in Fig. 7, using an all-hadronic search requiring significant $E_{\rm T}^{\rm miss}$ and two jets reconstructed as b-jets, ATLAS has set a limit of $m_{\tilde{b}} > \approx 650$ GeV for the same scenario. For $m_{\tilde{\chi}_1^0} \approx 280$ GeV or higher no limit can be placed anymore on direct bottom squark pair production in this simplified model [75]. The latest CMS results for this simplified model are featured in [71] and exhibit a similar reach.

The top squark decay modes depend on the SUSY mass spectrum. If kinematically allowed, the two-body decays $\tilde{t} \to t\tilde{\chi}^0$ (requires $m_{\tilde{t}} - m_{\tilde{\chi}^0} > m_t$) and $\tilde{t} \to b\tilde{\chi}^{\pm}$ (requires $m_{\tilde{t}} - m_{\tilde{\chi}^{\pm}} > m_b$) are expected to dominate. If not, the top squark decay may proceed either via the two-body decay $\tilde{t} \to c\tilde{\chi}^0$ or through $\tilde{t} \to bf\bar{f}'\tilde{\chi}^0$ (where f and \bar{f}' denote a fermion-antifermion pair with appropriate quantum numbers). For $m_{\tilde{t}} - m_{\tilde{\chi}^0} > m_b$ the

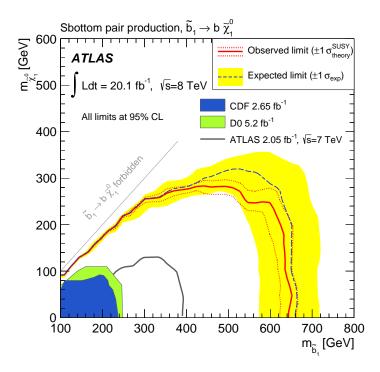


Figure 7: 95% C.L. exclusion contours in the sbottom-neutralino mass plane defined in the framework of a simplified model assuming a single decay chain of $\tilde{b} \to b \tilde{\chi}_1^0$.

latter decay chain represents a four-body decay with a W boson, charged Higgs H, slepton \tilde{l} , or light flavour squark \tilde{q} exchange. If the exchanged W boson and/or sleptons are kinematically allowed to be real ($m_{\tilde{t}}-m_{\tilde{\chi}^{\pm}}>m_b+m_W$ and/or $m_{\tilde{t}}-m_{\tilde{l}}>m_b$), the three-body decays $\tilde{t}\to Wb\tilde{\chi}^0$ and/or $\tilde{t}\to bl\tilde{l}$ will become dominant. For further discussion on top squark decays see for example [76].

Limits from LEP on the \tilde{t}_1 mass are > 96 GeV in the charm plus neutralino final state, and > 93 GeV in the lepton, b-quark and sneutrino final state [77].

The Tevatron experiments have performed a number of searches for top squarks, often assuming direct pair production. In the $b\ell\tilde{\nu}$ decay channel, and assuming a 100% branching fraction, limits are set as $m_{\tilde{t}} > 210$ GeV for $m_{\tilde{\nu}} < 110$ GeV and $m_{\tilde{t}} - m_{\tilde{\nu}} > 30$ GeV, or $m_{\tilde{t}} > 235$ GeV for $m_{\tilde{\nu}} < 50$ GeV [78,79]. In the $\tilde{t} \to c\tilde{\chi}^0$ decay mode, a top squark with a mass below 180 GeV is excluded for a neutralino lighter than 95 GeV [80,81]. In both analyses, no limits on the top squark can be set for

heavy sneutrinos or neutralinos. In the $\tilde{t} \to b \tilde{\chi}_1^\pm$ decay channel, searches for a relatively light top squark have been performed in the dilepton final state [82,83]. CDF sets limits in the $\tilde{t} - \tilde{\chi}_1^0$ mass plane for various branching fractions of the chargino decay to leptons and for two value of $m_{\tilde{\chi}_1^\pm}$. For $m_{\tilde{\chi}_1^\pm}=105.8$ GeV and $m_{\tilde{\chi}_1^0}=47.6$ GeV, top squarks between 128 and 135 GeV are excluded for W-like leptonic branching fractions of the chargino.

Today the LHC experiments have improved these limits substantially. As shown in the right plot of Fig. 8, limits on the top squark mass assuming a simplified model with a single decay chain of $\tilde{t} \to t \tilde{\chi}_1^0$ reach up to almost 700 GeV for light neutralinos, while for $m_{\tilde{\chi}_1^0} > 240$ GeV no limits can be provided anymore. The most important searches for this top squark decay topology are dedicated searches requiring zero or one isolated lepton, modest $E_{\rm T}^{\rm miss}$, and four or more jets out of which at least one jet must be reconstructed as bjet [84–85]. To increase the sensitivity to this decay topology different signal regions are considered in these ATLAS analyses. A search of the CMS collaboration requiring one isolated lepton and using a boosted decision tree for a dedicated optimisation in the $m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ plane [86] provides a comparable limit for this simplified model.

Assuming that the top squark decay exclusively proceeds via the chargino mediated decay chain $\tilde{t} \to b \tilde{\chi}_1^\pm, \, \tilde{\chi}_1^\pm \to W^{\pm(*)} \tilde{\chi}_1^0$ yields stop mass exclusion limits that vary strongly with the assumptions made on the $\tilde{t} - \tilde{\chi}_1^\pm - \tilde{\chi}_1^0$ mass hierarchy (see Fig. 8 left plot). Above the universal chargino mass limit of $m_{\tilde{\chi}_1^\pm} > 103.5$ GeV from LEP (see section "Exclusion limits on chargino masses") the strongest limits are placed for nearly mass degenerate chargino and neutralinos. For $m_{\tilde{\chi}_1^\pm} - m_{\tilde{\chi}_1^0} > 5$ GeV, a stop mass of ≈ 650 GeV for a light $\tilde{\chi}_1^0$ is excluded, while no limit can be placed anymore for $m_{\tilde{\chi}_1^0} > 280$ GeV [75]. These limits, however, can weaken significantly when other assumptions about the mass hierarchy are imposed. For example, as also shown in Fig. 8, if the chargino becomes nearly mass degenerate with the top squark the key experimental signature turns from an all-hadronic final

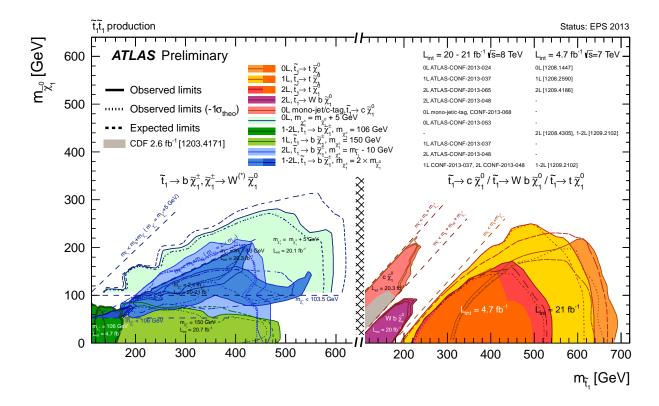


Figure 8: 95% C.L. exclusion contours in the $m_{\tilde{t}}-m_{\tilde{\chi}_1^0}$ plane for different top squark decay chains and different searches from the ATLAS collaboration. The plot on the right shows simplified model limits for three different decay chains; $\tilde{t} \to c \tilde{\chi}_1^0$ (W and t forbidden), $\tilde{t} \to Wb \tilde{\chi}_1^0$ (t forbidden), and $\tilde{t} \to t \tilde{\chi}_1^0$ (t allowed), which represent three different kinematic regions of the top squark decay. The plot to the left shows simplified model limits for the top decay chain via a chargino: $\tilde{t} \to b \tilde{\chi}_1^\pm$, $\tilde{\chi}_1^\pm \to W^{\pm(*)} \tilde{\chi}_1^0$. For this case, several exemplary hypotheses on the $\tilde{t} - \tilde{\chi}_1^\pm - \tilde{\chi}_1^0$ mass hierarchy are assumed.

state with b-jets and $E_{\rm T}^{\rm miss}$ into a multi-lepton and $E_{\rm T}^{\rm miss}$ topology. Assuming $m_{\tilde{\chi}_1^\pm} = m_{\tilde{t}} - 10$ GeV provides a best limit of $m_{\tilde{t}} = 470$ GeV for neutralino masses below 100 GeV, whereas for $m_{\tilde{\chi}_1^0} > 200$ GeV no limit can be obtained [87]. As for the decay with top quarks in the final state, the CMS analysis [86] provides also for this decay chain comparable limits.

If the decays $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{t} \to b \tilde{\chi}_1^\pm$, $\tilde{\chi}_1^\pm \to W^{\pm(*)} \tilde{\chi}_1^0$ are kinematically forbidden, the decay chains $\tilde{t} \to W b \tilde{\chi}^0$ and $\tilde{t} \to c \tilde{\chi}^0$ can become important. As shown in the right plot of Fig. 8, ATLAS provides for the kinematic region $m_{\tilde{t}} - m_{\tilde{\chi}^\pm} > m_b + m_W$ upper limits on top squark mass of ≈ 230 GeV for a neutralino lighter than ≈ 100 GeV [87], while the boosted decision tree based CMS analysis pushes this limit to about 320 GeV for neutralino masses below ≈ 200 GeV [86]. For the kinematic region in which even the production of real W bosons is not allowed, ATLAS improves the Tevatron limit on $\tilde{t} \to c \tilde{\chi}^0$ substantially. Based on a combination of a monojet analysis and a dedicated charm quark identification algorithm, a top squark with a mass below 240 GeV is excluded for a neutralino lighter than 200 GeV [88].

R-parity violating production of single top squarks has been searched for at HERA [89]. Top squarks are assumed to be produced via a λ' coupling and decay either to $b\tilde{\chi}_1^{\pm}$ or R-parity-violating to a lepton and a jet. Limits are set on λ'_{131} as a function of the top squark mass in an MSSM framework with gaugino mass unification at the GUT scale.

Top squarks can also be long-lived and hadronize to a R-hadron, for example in the scenario where the top squark is the next-to-lightest SUSY particle (NLSP), with a small mass difference to the LSP. Searches for massive stable charged particles are sensitive to such top squarks. As shown in Fig. 4 for the CMS analysis [63], the LHC experiments have set limits $m_{\tilde{t}} > 800$ GeV in such scenarios, surpassing significantly the earlier Tevatron limits of about 300 GeV [90,91].

It should be noted that limits discussed in this section are belonging to different top and sbottom squark decay channels, different sparticle mass hierarchies, and different simplified decay scenarios. Therefore, care must be taken when interpreting these limits in the context of more complete SUSY models. Further discussion about the limits of third generation squarks and how they compare with limits on other sparticles is given in section "Summary of exclusion limits on squarks and gluinos assuming R-Parity conservation".

II.4.4. Summary of exclusion limits on squarks and gluinos assuming R-Parity conservation

A summary of the most important first generation squark and gluino mass limits for different interpretations approaches assuming R-parity conservation is shown in Table 2.

For gluino masses rather similar limits, ranging from 1.2 TeV to 1.4 TeV, are obtained from different model assumptions indicating that the LHC is indeed probing for a large region in SUSY parameter space direct gluino production at the 1 TeV scale and beyond. For neutralino masses above approximately 700 GeV in the best case, ATLAS and CMS searches cannot place any limits on the gluino mass.

With limits above 1.5 TeV the most stringent constraints on squark masses are obtained in the context of very constrained models like the CMSSM, where squarks are near degenerate in mass and thus the exclusion is mainly driven by squark-gluino and squark-squark production. If, however, these constraints are lifted and interpretations are carried out in single decay chains (i.e. simplified models) it becomes apparent that not only limits on squark mass are much weaker but they also vary strongly depending on the assumed properties of the decay chain. In the context of simplified models, limits on direct squark production only go up 800 GeV under the assumption of an eightfold massdegeneracy for first and second generation squarks. If, however, only a single squark is assumed to be light, this limit weakens to only ≈ 450 GeV for the best possible scenario of very light neutralinos. For the production of single bottom squarks the best limit improves to ≈ 650 GeV due to better control of the SM background via the identification of b quarks in the final state.

For top squarks the situation is even more complex because of the many different decay chains that must be considered. While in the best case limits of up to 700 GeV are possible, there are also regions in SUSY parameter space where even for light neutralinos top squarks above a few hundred GeV cannot be ruled out by the LHC searches.

In summary, while for light neutralinos limits obtained on the gluino mass of ≈ 1.3 TeV are only mildly depending on the interpretation approach, limits on direct squark production dependent strongly on the chosen model. Especially for direct production of top squarks there are still large regions in parameter space where masses below 0.5 TeV cannot be excluded. This is also true for first and second generation squarks when only one single squark is considered. Furthermore, for neutralino masses above *approx* 300 GeV no limit on any direct squark production scenario can be placed by the LHC.

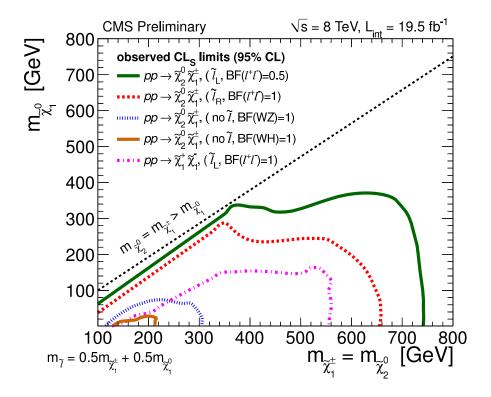
II.5. Exclusion limits on the masses of charginos and neutralinos

Charginos and neutralinos result from mixing of the charged wino and higgsino states, and the neutral bino, wino and higgsino states, respectively. The mixing is determined by a limited number of parameters. For charginos these are the wino mass parameter M_2 , the Higgsino mass parameter μ , and $\tan \beta$, and for neutralinos these are the same parameters plus the bino mass parameter M_1 . The mass states are four charginos $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^\pm,$ and four neutralinos $\tilde{\chi}_1^0,$ $\tilde{\chi}_2^0,$ $\tilde{\chi}_3^0$ and $\tilde{\chi}_4^0,$ ordered in increasing mass. Depending on the mixing, the chargino and neutralino composition is dominated by specific states, which are referred to as bino-like $(M_1 \ll M_2, \mu)$, wino-like $(M_2 \ll M_1, \mu)$, or Higgsino-like ($\mu \ll M_1, M_2$). If gaugino mass unification at the GUT scale is assumed, a relation between M_1 and M_2 at the electroweak scale follows: $M_1 = 5/3 \tan^2 \theta_W M_2 \approx 0.5 M_2$ (with θ_W the weak mixing angle), with consequences for the chargino-neutralino mass relation after mixing. Charginos and neutralinos carry no color charge, and only have electroweak couplings (neglecting gravity).

II.5.1. Exclusion limits on chargino masses

If kinematically allowed, two body decay modes such as $\tilde{\chi}^{\pm} \to \ell^{\pm} \tilde{\nu}$ are dominant. If not, three body decay $\tilde{\chi}^{\pm} \to f \bar{f}' \tilde{\chi}^0$ are mediated through virtual W bosons or sfermions. If sfermions are heavy, the W mediation dominates, and $f \bar{f}'$ are distributed with branching fractions similar to W decay products. If, on the other hand, sleptons are light enough to play a significant role in the decay mediation, leptonic final states will be enhanced.

Table 2: Summary of squark mass and gluino mass limits using different interpretation approaches assuming R-parity conservation. Masses in this table are provided in GeV. Further details about assumption and analyses from which these limits are obtained are discussed in the corresponding sections of the text.


Model	Assumption	$m_{ ilde{q}}$	$m_{ ilde{g}}$
	$m_{\tilde{q}} pprox m_{\tilde{g}}$	≈ 1700	≈ 1700
CMSSM	all $m_{\tilde{q}}$	-	≈ 1300
	all $m_{\tilde{g}}$	≈ 1600	-
Simplified models $\tilde{g}\tilde{g}$			
$\tilde{g} o q ar{q} \tilde{\chi}_1^0$	$m_{\tilde{\chi}_{1}^{0}} = 0$	-	≈ 1200
	$m_{\tilde{\chi}_1^0} > \approx 450$	-	no limit
$\frac{\bar{g} \to b\bar{b}\tilde{\chi}_1^0}$	$m_{\tilde{\chi}_{1}^{0}} = 0$	-	≈ 1200
	$m_{\tilde{\chi}_1^0} > \approx 650$	-	no limit
$\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$	$m_{\tilde{\chi}_{1}^{0}} = 0$	-	≈ 1400
	$m_{\tilde{\chi}_1^0} > \approx 700$	-	no limit
Simplified models $\tilde{q}\tilde{q}$			
$\tilde{q} \to q \tilde{\chi}_1^0$	$m_{\tilde{\chi}^0_1} = 0$	≈ 800	-
	$m_{\tilde{\chi}_1^0} \stackrel{\wedge}{>} \approx 300$	no limit	-
$\tilde{u}_L \to q \tilde{\chi}_1^0$	$m_{\tilde{\chi}_{1}^{0}} = 0$	≈ 450	-
	$m_{\tilde{\chi}_1^0} > \approx 100$	no limit	-
$\frac{\tilde{b} \to b \tilde{\chi}_1^0}{$	$m_{\tilde{\chi}^0_1} = 0$	≈ 650	-
	$m_{\tilde{\chi}_1^0} > \approx 300$	no limit	-
$\widetilde{t} \to t \tilde{\chi}_1^0$	$m_{\tilde{\chi}_1^0} = 0$	≈ 700	-
	$m_{\tilde{\chi}_1^0} > \approx 250$	no limit	-
$\tilde{t} \to b \tilde{\chi}_1^{\pm}$	$m_{\tilde{\chi}^0_1} = 0$	≈ 700	-
$[m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}^0} > 5 \text{ GeV}]$	$m_{\tilde{\chi}_1^0} > \approx 300$	no limit	-
$\tilde{t} o b \tilde{\chi}_1^{\pm}$	$m_{\tilde{\chi}^0_1} = 0$	≈ 500	
$[m_{\tilde{t}} - m_{\tilde{\chi}_1^{\pm}} > 10 \text{ GeV}]$	$m_{\tilde{\chi}_1^0} \stackrel{\sim}{>} \approx 200$	no limit	-
$\tilde{t} \to W b \tilde{\chi}_1^0$	$m_{\tilde{\chi}_1^0} \ll 200$	≈ 300	-
$m_{\tilde{t}} - m_{\tilde{\chi}^0} > m_b + m_W]$, ~1		
$\widetilde{t} \to c \tilde{\chi}_1^0$	$m_{\tilde{\chi}_1^0} \ll 200$	≈ 250	-
$[m_{\tilde{t}} - m_{\tilde{\chi}^0} > m_c]$			
	October 1, 2013 11:50		

At LEP, charginos have been searched for in fully-hadronic, semi-leptonic and fully leptonic decay modes [92,93]. A general lower limit on the lightest chargino mass of 103.5 GeV is derived, except in corners of phase space with low electron sneutrino mass, where destructive interference in chargino production, or two-body decay modes, play a role. The limit is also affected if the mass difference between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ is small; dedicated searches for such scenarios set a lower limit of 92 GeV.

At the Tevatron, charginos are searched for via production of a pair of charginos, or associated production of $\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0$ [94,95]. Decay modes involving multilepton final states provide the best discrimination against the large multijet background. Analyses look for at least three charged isolated leptons, for two lepton with missing transverse momentum, or for two leptons with the same charge. Depending on the $\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0$ and/or $\tilde{\chi}_2^0 - \tilde{\chi}_1^0$ mass differences, leptons may be soft.

At the LHC, the search strategy is similar to that at the Tevatron. As shown in Fig. 1, pair production of chargino and neutralinos at the LHC, for masses of several hundreds of GeV, is at least two orders of magnitude smaller than for colored SUSY particles (e.g. top squark pair production). For this reason a high statistic data sample is required to improve the sensitivity of LEP and Tevatron searches for direct chargino/neutralino production. With the data collected in 2012, ATLAS and CMS have now surpassed in large regions of SUSY parameter space the limits from LEP and Tevatron. Chargino pair production is searched for in the dilepton plus missing momentum final state. In the interpretation of the results, both ATLAS [96] and CMS [97] assume mediation through light sleptons; the analyses are not yet sensitive to decays via a W boson. In this scenario, chargino mass limits up to 550 GeV are set for massless LSPs, but no limits on the chargino mass can be set in this model for $\tilde{\chi}_1^0$ heavier than 150 GeV. The trilepton plus missing momentum final state is used to set limits on $\tilde{\chi}_1^{\pm} + \tilde{\chi}_2^0$ production, assuming wino-like $\tilde{\chi}^{\pm}$ and $\tilde{\chi}_2^0$ and $m_{\tilde{\chi}^{\pm}} = m_{\tilde{\chi}_2^0}$, leaving $m_{\tilde{\chi}^{\pm}}$ and $m_{\tilde{\chi}_1^0}$ free. Again, the branching fraction of leptonic final states is determined by the slepton masses. If the decay is predominantly mediated by a light $\tilde{\ell}_L$, i.e. $\tilde{\ell}_R$ is assumed to be heavy, the three lepton flavours will be produced in equal amounts. It is assumed that $\ell_{\rm L}$ and sneutrino masses are equal, and diagrams with sneutrinos are included. In this scenario, ATLAS [98] and CMS [97] exclude chargino masses below 730 GeV for massless LSPs; no limits are set for LSPs above 350 GeV. If the decay is dominated by a light ℓ_R , the chargino needs to have a large higgsino component, preferring the decays to tau leptons. Assuming this to hold for $\tilde{\chi}_2^0$ as well, ATLAS [99] and CMS [97] set limits of 350 GeV on the chargino mass, for massless LSPs. If sleptons are heavy, the chargino is assumed to decay to a W boson plus LSP, and the $\tilde{\chi}_2^0$ into either Z plus LSP, or Higgs plus LSP. In the WZ channel, ATLAS [98] and CMS [97] limits on the chargino mass reach 300 GeV for massless LSPs, but not limits are set for LSPs heavier than 100 GeV. The WH channel is also investigated, for $m_H = 126$ GeV and using Higgs decays to $b\bar{b}$ (ATLAS [100]) or Higgs decays to $b\bar{b}$, WW, ZZ and $\tau^+\tau^-$ (CMS [101]), assuming a SM-like branching fraction in these final states. Chargino mass limits extend up to 287 GeV for massless LSP, but vanish for LSPs above 50 GeV. The CMS results on electroweak gaugino searches are summarized in Fig. 9, the ATLAS results are similar.

In both the wino region (a characteristic of anomaly-mediated SUSY-breaking models) and the higgsino region of the MSSM, the mass splitting between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ is small. In such scenarios, charginos may be long-lived. Charginos decaying in the detectors away from the primary vertex could lead to signatures such as kinked-tracks, or apparently disappearing tracks, since, for example, the pion in $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \tilde{\chi}_1^0$ might be too soft to be reconstructed. At the LHC, a search has been performed for such disappearing tracks, and interpreted with anomaly-mediated SUSY breaking models. Charginos with lifetimes between 0.1 and 10 ns are excluded for chargino masses up to 500 GeV [102]. Within AMSB models, a lower limit on the chargino mass of 270 GeV is set, for a mass difference with the LSP of 160 MeV and a lifetime of 0.2 ns.

Figure 9: A summary of limits on chargino and neutralino masses as obtained by CMS.

Charginos with a lifetime longer than the time needed to pass through the detector appear as charged stable massive particles. Limits have been derived by the LEP experiments [103] and by D0 at the Tevatron [91]. D0 results exclude higgsino-like stable charginos below 244 GeV, and gaugino-like stable charginos below 278 GeV.

II.5.2. Exclusion limits on neutralino masses

In a considerable part of the MSSM parameter space, and in particular when demanding that the LSP carries no electric or color charge, the lightest neutralino $\tilde{\chi}^0_1$ is the LSP. If R-parity is conserved, such a $\tilde{\chi}^0_1$ is stable. Since it is weakly interacting, it will typically escape detectors unseen. Limits on the invisible width of the Z boson apply to neutralinos with a mass below 45.5 GeV, but depend on the Z-neutralino coupling. Such a coupling could be small or even absent; in such a scenario there is no general lower limit on the mass of the lightest neutralino [104]. In models with gaugino mass unification at

high energy scales, a neutralino mass limit is derived from the chargino mass limit, and amounts to 47 GeV. Assuming a constraining model like the CMSSM, this limit increases to 50 GeV at LEP; however the strong constraints now set by the LHC increase such CMSSM-derived $\tilde{\chi}_1^0$ mass limits to well above 200 GeV.

Even though a LSP neutralino is only weakly interacting, collider experiments are not totally blind to neutralino pair production. Pair production of neutralinos accompanied by initial state radiation could lead to an observable final state. At LEP, final states with only a single isolated photon were studied, but backgrounds from neutrino pair production were too large. At hadron colliders, monojet final states have been used to set limits on the pair production cross section [105–107].

In gauge-mediated models, the LSP is typically a gravitino, and the phenomenology is determined by the nature of the NLSP. A NLSP neutralino will decay to a gravitino and a SM particle whose nature is determined by the neutralino composition. Final states with two high $p_{\rm T}$ photons and missing momentum are searched for, and interpreted in gauge mediation models with bino-like neutralinos [108–112]. Assuming only gluino pair production and a bino-like neutralino produced in gluino decay, limits on gluino masses of about 1 TeV are set for all neutralino masses, as shown in Fig. 10 for the CMS diphoton analysis.

Assuming the production of at least two neutralinos per event, neutralinos with large non-bino components can also be searched for in final states with missing momentum plus any two bosons out of the collection γ, Z , Higgs. Searches for final states with $Z \ (\rightarrow \ell^+\ell^-)$ bosons and missing transverse momentum have been performed at the Tevatron [113] and at the LHC [114,115], and are interpreted in such models.

In gauge mediation models, NLSP neutralino decay need not be prompt, and experiments have searched for late decays. CDF have searched for delayed $\tilde{\chi}^0_1 \to \gamma \tilde{G}$ decays using the timing of photon signals in the calorimeter [116]. CMS has used the same technique at the LHC [117]. Results are given as upper limits on the neutralino production cross section as

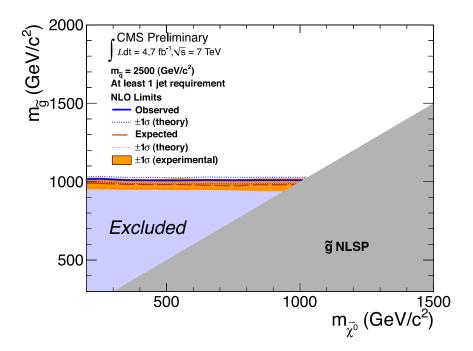


Figure 10: Observed 95% C.L. limits on the gluino mass as a function of the neutralino mass, in general gauge mediation models assuming only gluino pair production, with a bino-like neutralino produced in gluino decay, and a neutralino decay to photon plus gravitino.

a function of neutralino mass and lifetime. D0 has looked at the direction of showers in the electromagnetic calorimeter with a similar goal [118], and ATLAS has searched for photon candidates that do not point back to the primary vertex [119].

Heavier neutralinos, in particular $\tilde{\chi}_2^0$, have been searched for in their decays to the lightest neutralino plus a γ , a Z boson or a Higgs boson. Limits on electroweak production of $\tilde{\chi}_2^0$ plus $\tilde{\chi}_1^\pm$ from trilepton analyses have been discussed in the section on charginos; the assumption of equal mass of $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$ make the limits on chargino masses apply to $\tilde{\chi}_2^0$ as well. Heavier neutralinos in the decay chains of colored particles are searched for by the presence of missing momentum plus an isolated high-energy photon [112] or leptons [118,120–121]. In $\tilde{\chi}_2^0$ decays to $\tilde{\chi}_1^0$ and a lepton pair, the lepton pair invariant mass distribution may show a structure that can be used to measure the $\tilde{\chi}_2^0 - \tilde{\chi}_1^0$ mass difference in case of a signal [122],

Table 3: Summary of weak gaugino mass limits, assuming R-parity conservation. Masses in the table are provided in GeV. Further details about assumptions and analyses from which these limits are obtained are discussed in the text.

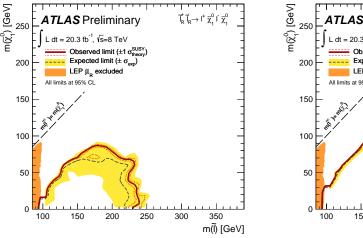
· · · · · · · · · · · · · · · · · · ·	-					
Assumption	m_{χ}					
$\tilde{\chi}_1^{\pm}$, all $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$	> 92					
$\tilde{\chi}_1^{\pm} \Delta m > 5, m_{\tilde{\nu}} > 300$	> 103.5					
$ ilde{\chi}_{1}^{\pm}, m_{(ilde{\ell}, ilde{ u})} = (m_{ ilde{\chi}_{1}^{\pm}} + m_{ ilde{\chi}_{1}^{0}})/2$						
\ / / · · · · · · · · · · · · · · · · ·	103.5 - 115, > 550					
$\tilde{\chi}_1^{\pm}, m_{\tilde{\chi}_1^0} > 150$	no LHC limit					
$\tilde{\chi}_1^{\pm},m_{\tilde{\ell}} > m_{\tilde{\chi}_1^{\pm}}$	no LHC limit					
$m_{ ilde{\chi}_1^\pm} = m_{ ilde{\chi}_2^0}, m_{ ilde{\ell}_{ m L}} = (m_{ ilde{\chi}_1^\pm} + m_{ ilde{\chi}_1^0})/2$						
$m_{ ilde{\chi}^0_1}pprox 0$	> 730					
$m_{\tilde{\chi}_1^0} > 350$	no LHC limit					
$m_{\tilde{\chi}_1^{\pm}} = m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_{\mathrm{R}}} = (m_{\tilde{\chi}_1^{\pm}} + m_{\tilde{\chi}_1^0})/2$						
$m_{ ilde{\chi}^0_1}pprox 0$	> 350					
$m_{\tilde{\chi}_1^0} > 100$	no LHC limit					
$m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}} > m_{\tilde{\chi}_{1}^{\pm}}, \text{BF}(WZ) = 1$						
$m_{ ilde{\chi}^0_1}pprox 0$	> 300					
$m_{\tilde{\chi}_1^0} > 100$	no LHC limit					
$m_{\tilde{\chi}_{1}^{\pm}} = m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}} > m_{\tilde{\chi}_{1}^{\pm}}, \text{BF}(WH) = 1$						
$m_{\tilde{\chi}_1^0} \approx 0$	> 280					
$m_{\tilde{\chi}_1^0} > 50$	no LHC limit					
1 1 1 1 1	1 10 . 1					

but it can also be used in the search itself, in order to suppress background [123].

The lightest neutralino can decay in models with R-parity violation. If the decay involves a non-zero λ coupling, the final state will be a multi-lepton one. Searches for events with four or more isolated charged leptons by ATLAS [124] and CMS [125] are interpreted in such models. An ATLAS search for events with isolated muons and a displaced vertex is interpreted in a model with R-parity violating neutralino decay involving a non-zero λ' coupling [126].

II.6. Exclusion limits on slepton masses

In models with slepton and gaugino mass unification at the GUT scale, the right-handed slepton, $\tilde{\ell}_R$, is expected to be lighter than the left-handed slepton, $\tilde{\ell}_L$. For tau sleptons there may be considerable mixing between the L and R states, leading to a significant mass difference between the lighter $\tilde{\tau}_1$ and the heavier $\tilde{\tau}_2$.


II.6.1. Exclusion limits on the masses of charged sleptons

The most model-independent searches for selectrons, smuons and staus originate from the LEP experiments [127]. Smuon production only takes place via s-channel γ^*/Z exchange. Search results are often quoted for $\tilde{\mu}_{\rm R}$, since it is typically lighter than $\tilde{\mu}_{\rm L}$ and has a weaker coupling to the Z boson; limits are therefore conservative. Decays are expected to be dominated by $\tilde{\mu}_{\rm R} \to \mu \tilde{\chi}_1^0$, leading to two non-back-to-back muons and missing momentum. Limits are calculated in the MSSM under the assumption of gaugino mass unification at the GUT scale, and depend on the mass difference between the smuon and $\tilde{\chi}_1^0$. A $\tilde{\mu}_R$ with a mass below 94 GeV is excluded for $m_{\tilde{\mu}_{\rm R}} - m_{\tilde{\chi}_{\rm s}^0} > 10$ GeV. The selectron case is similar to the smuon case, except that an additional production mechanism is provided by t-channel neutralino exchange. The $\tilde{e}_{\rm R}$ lower mass limit is 100 GeV for $m_{\tilde{\chi}_1^0} < 85$ GeV. Due to the t-channel neutralino exchange, $\tilde{e}_{\rm R}\tilde{e}_{\rm L}$ pair production was possible at LEP, and a lower limit of 73 GeV was set on the selectron mass regardless of the neutralino mass. The potentially large mixing between $\tilde{\tau}_{\rm L}$ and $\tilde{\tau}_{R}$ not only makes the $\tilde{\tau}_{1}$ light, but also decreases its coupling to the Z boson. LEP limits range between 87 and 93 GeV depending on the $\tilde{\chi}_1^0$ mass, for $m_{\tilde{\tau}} - m_{\tilde{\chi}_1^0} > 7$ GeV [127].

As shown in Fig. 1, at the LHC pair production of sleptons is not only heavily suppressed with respect to pair production of colored SUSY particles but is also almost two orders of magnitude smaller than pair-production of chargino and neutralinos. Therefore, only with the 2012 LHC data ATLAS and CMS are starting to surpass the sensitivity of the LEP analyses.

ATLAS and CMS have searched for direct production of selectron pairs and smuon pairs at the LHC, with each slepton

decaying to its corresponding SM partner lepton and the $\tilde{\chi}_1^0$ LSP. ATLAS [96] and CMS [97] set limits in this model of 220 GeV for $\tilde{\ell}_R$, and 290 GeV for $\tilde{\ell}_L$, for a massless $\tilde{\chi}_1^0$ and assuming equal selectron and smuon masses, as shown in Fig.slepton. The limits deteriorate with increasing $\tilde{\chi}_1^0$ mass due to decreasing missing momentum and lepton momentum. As a consequence, there is a gap between LEP and LHC limits for $\tilde{\chi}_1^0$ masses above 20 GeV, and no limits are set for $\tilde{\chi}_1^0$ masses above 90 GeV ($\tilde{\ell}_R$) or above 150 GeV ($\tilde{\ell}_L$).

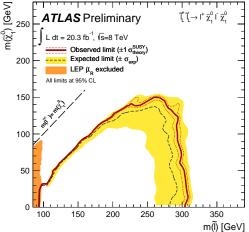


Figure 11: Exclusion limits on $\tilde{\ell}_R$ masses (left) and $\tilde{\ell}_L$ masses (right), assuming equal selectron and smuon masses in both scenarios, and assuming a 100% branching fraction for $\tilde{l} \to \ell \tilde{\chi}_1^0$.

In gauge-mediated SUSY breaking models, sleptons can be (co-)NLSPs, *i.e.*, the next-to-lightest SUSY particles and almost degenerate in mass, decaying to a lepton and a gravitino. This decay can either be prompt, or the slepton can have a non-zero lifetime. Combining several analyses, lower mass limits on $\tilde{\mu}_R$ of 96.3 GeV and on \tilde{e}_R of 66 GeV are set for all slepton lifetimes at LEP [128]. In a considerable part of parameter space in these models, the $\tilde{\tau}$ is the NLSP. The LEP experiments have set lower limits on the mass of such a $\tilde{\tau}$ between 87 and 97 GeV, depending on the $\tilde{\tau}$ lifetime. ATLAS has searched for final states with τ s, jets and missing

transverse momentum, and has interpreted the results in GMSB models setting limits on the model parameters [129]. CMS has interpreted a multilepton analysis in terms of limits on gauge mediation models with slepton (co-)NLSP [130]. CDF has put limits on gauge mediation models at high $\tan \beta$ and slepton (co-)NLSP using an analysis searching for like-charge light leptons and taus [131].

Limits also exist on sleptons in R-parity violating models, both from LEP and the Tevatron experiments. From LEP, lower limits on $\tilde{\mu}_{\rm R}$ and $\tilde{e}_{\rm R}$ masses in such models are 97 GeV, and the limits on the stau mass are very close: 96 GeV [132].

Charged slepton decays may be kinematically suppressed, for example in the scenario of a NLSP slepton with a very small mass difference to the LSP. Such a slepton may appear to be a stable charged massive particle. Interpretation of searches at LEP for such signatures within GMSB models with stau NLSP or slepton co-NLSP exclude masses up to 99 GeV [103]. Searches of stable charged particles at the Tevatron [90,91] and at the LHC [133,63] are also interpreted in terms of limits on stable charged sleptons. The limits obtained at the LHC exclude stable staus with masses below 339 GeV when produced directly in pairs, and below 500 GeV when staus are produced both directly and indirectly in the decay of other particles in a GMSB model. Drell-Yan production of q = 1 stable lepton-like particles is excluded for masses below 574 GeV [63].

II.6.2. Exclusion limits on sneutrino masses

The invisible width of the Z boson puts a lower limit on the sneutrino mass of about 45 GeV. Tighter limits are derived from other searches, notably for gauginos and sleptons, under the assumption of gaugino and sfermion mass universality at the GUT scale, and amount to approximately 94 GeV in the MSSM. It is possible that the lightest sneutrino is the LSP; however, a lefthanded sneutrino LSP is ruled out as a cold dark matter candidate [134,135].

Production of pairs of sneutrinos in R-parity violating models has been searched for at LEP [132]. Assuming fully leptonic decays via λ -type couplings, lower mass limits between 85 and 100 GeV are set. At the Tevatron [136,137] and at the

LHC [138], searches have focused on scenarios with resonant production of a sneutrino, decaying to $e\mu$ final states (as well as to $\mu\tau$, and $e\tau$ for CDF). No signal has been seen, and limits have been set on sneutrino masses as a function of the value of relevant RPV couplings. As an example, the ATLAS analysis excludes a resonant tau sneutrino with a mass below 800 GeV for $\lambda_{312} > 0.01$ and $\lambda'_{311} > 0.01$ [138].

Table 4: Summary of slepton mass limits from LEP and LHC, assuming R-parity conservation and 100% branching fraction for $\tilde{l} \to \ell \tilde{\chi}^0_1$. Masses in this table are provided in GeV.

Assumption	$m_{ ilde{l}}$
$\tilde{\mu}_{\mathrm{R}}, \Delta m(\tilde{\mu}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}) > 10$	> 94
$\tilde{e}_{\mathrm{R}}, \Delta m(\tilde{e}_{\mathrm{R}}, \tilde{\chi}_{1}^{0}) > 10$	> 94
\tilde{e}_{R} , any Δm	> 73
$\tilde{\tau}_{\mathrm{R}}, \Delta m((\tilde{\tau}_{\mathrm{R}}, \tilde{\chi}_1^0) > 7$	> 87
$\tilde{\nu}_e, \Delta m(\tilde{e}_{\mathrm{R}}, \tilde{\chi}_1^0) > 10$	> 94
$m_{\tilde{e}_{\mathrm{R}}} = m_{\tilde{\mu}_{\mathrm{R}}}, m_{\tilde{\chi}_{1}^{0}} \approx 0$	> 220
$m_{\tilde{\chi}_1^0} > \approx 90$	no LHC limit
$m_{\tilde{e}_{\rm L}} = m_{\tilde{\mu}_{\rm L}}, m_{\tilde{\chi}_1^0} \approx 0$	> 290
$m_{\tilde{\chi}_1^0} > \approx 150$	no LHC limit

II.7. Global interpretations Apart from the interpretation of the direct searches for sparticle production at colliders in terms of limits on masses of individual SUSY particles, model-dependent interpretations of allowed SUSY parameter space are derived from global SUSY fits. Typically these fits combine the results from collider experiments with indirect constraints on SUSY as obtained from low-energy experiments, flavor physics, high-precision electroweak results, and astrophysical data.

In the pre-LHC era these fits were mainly dominated by indirect constraints. Even for very constrained models like the CMSSM, the allowed parameter space, in terms of squark and gluino masses, ranged from several hundreds of GeV to a few TeV. For the theoretically well motivated class of

constrained supergravity models like the CMSSM, global fits indicated that squarks and gluino masses in the range of 500 to 1000 GeV were the preferred region of parameter space, although values as high as few TeV were allowed with lower probabilities [139].

With ATLAS and CMS now probing mass scales around 1 TeV and even beyond, the importance of the direct searches for global analyses of allowed SUSY parameter space has significantly increased. For example, imposing the new experimental limits on constrained supergravity models pushes the most likely values of first generation squark and gluino masses beyond 1 TeV, typically resulting in overall values of fit quality significantly worse than those in the pre-LHC era [140]. Although these constrained models are not yet ruled out, the extended experimental limits impose tight constraints on the allowed parameter space.

For this reason, the emphasis of global SUSY fits has shifted towards less-constrained SUSY models. Especially interpretations in the pMSSM [141] but also in simplified models have been useful to generalize SUSY searches, for example in order to increase their sensitivity for compressed spectra where the mass of the LSP is much closer to squark and gluino masses than predicted by for example the CMSSM. As shown in Table 2, for neutralino masses above a few hundred GeV the current set of ATLAS and CMS searches cannot exclude the existence of light squarks and also gluinos above around 1 TeV are not yet fully excluded.

Furthermore, the discovery of a Higgs boson with a mass around 126 GeV has triggered many studies regarding the compatibility of SUSY parameter space with this new particle. Much of it is still work in progress and it will be interesting to see how the interplay between the results from direct SUSY searches and more precise measurements of the properties of the Higgs boson will unfold in the forthcoming era of high-energy running of the LHC.

II.8. Summary and Outlook

Direct searches for SUSY, combined with limits from highprecision experiments that look for new physics in loops, put SUSY under considerable scrutiny. In particular the absence of any observation of new phenomena at the first run of the LHC, at $\sqrt{s}=7$ and 8 TeV, place significant constraints on SUSY parameter space. Today, inclusive searches probe production of gluinos in the rage of 1.0-1.4 TeV, first and second generation squarks to about 1.0 TeV, third generation squarks at scales around 600 GeV, electroweak gauginos at scales around 300-500 GeV, and sleptons around 200 GeV. However, depending on the assumptions made of the underlying SUSY spectrum these limits can also weaken considerably. An overview of the current landscape of SUSY searches and corresponding exclusion limits at the LHC is shown in Fig. 12 from the ATLAS experiment [142]. The corresponding results of the CMS experiment are similar [143].

The interpretation of results at the LHC has moved away from constrained models like the CMSSM towards a large set of simplified models, or the pMSSM. On the one hand this move is because the LHC limits have put constrained models like the CMSSM under severe pressure, while on the other hand simplified models leave more freedom to vary parameters and form a better representation of the underlying sensitivity of analyses. However, these interpretations in simplified models do not come without a price: the decomposition of a potentially complicated reality in a limited set of individual decay chains can be significantly incomplete. Therefore, quoted limits in simplified models are only valid under the explicit assumptions made in these models, assumptions that are usually stated on the plots, and in the relevant LHC papers. Interpretations of simplified models in generic cases, ignoring the assumptions made, can lead to overestimation of limits on SUSY parameter space. In this context, the limit range of 1.0-1.4 TeV on generic colored SUSY particles only hold for light neutralinos, in the R-parity conserving MSSM. Limits on third generation squarks and electroweak gauginos also only hold for light neutralinos, and under specific assumptions for decay modes and slepton masses. In general, SUSY below the 1 TeV scale is not yet ruled out.

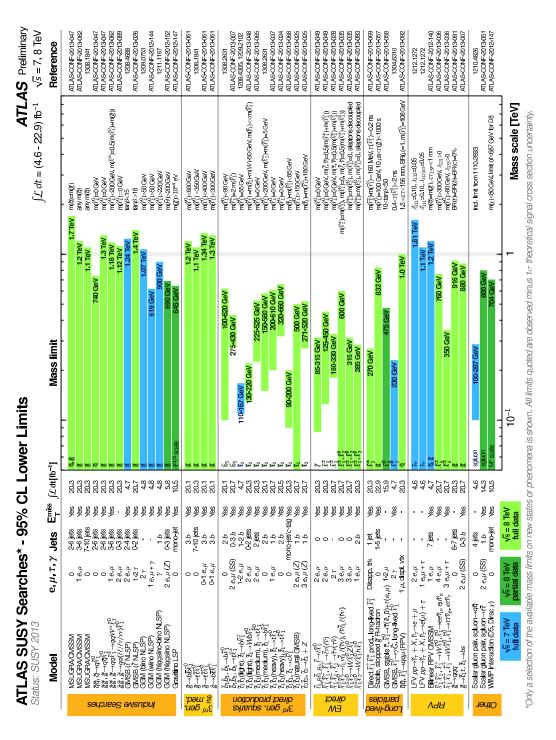


Figure 12: Overview of the current landscape of SUSY searches at the LHC. The plot shows exclusion mass limits of ATLAS for different searches and interpretation assumptions. The corresponding results of CMS are comparable.

The next run of the LHC, at $\sqrt{s} = 13$ TeV or higher, with significantly larger integrated luminosities, will present again a great opportunity for SUSY searches. The operation at higher energy will increase the production cross section for SUSY particles, shown in Fig. 1, substantially. While typically for mass around 500 GeV the increase is about 3 to 5 times the production cross section at 8 TeV, this becomes an increase of almost two order of magnitude for a SUSY mass scale of 1.5 to 2 TeV. Apart from pushing the sensitivity of LHC searches to higher mass scales, further LHC data will also help to close holes and gaps that are left behind in today's SUSY limits. These could be, for example, due to compressed particle spectra, stealth SUSY, or the violation of R-parity.

Now that the analyses of the 7 and 8 TeV LHC data have come to a first conclusion, the LHC experiments are preparing for the higher energy running of the LHC in 2015. The first few years of the new data taking campaign, providing the best opportunity for discovery, will be critical for SUSY.

References

- 1. H. Miyazawa, Prog. Theor. Phys. **36**, 1266 (1966).
- 2. Yu. A. Golfand and E.P. Likhtman, Sov. Phys. JETP Lett. **13**, 323 (1971).
- 3. J.L. Gervais and B. Sakita, Nucl. Phys. **B34**, 632 (1971).
- 4. D.V. Volkov and V.P. Akulov, Phys. Lett. **B46**, 109 (1973).
- 5. J. Wess and B. Zumino, Phys. Lett. **B49**, 52 (1974).
- 6. J. Wess and B. Zumino, Nucl. Phys. **B70**, 39 (1974).
- 7. A. Salam and J.A. Strathdee, Nucl. Phys. **B76**, 477 (1974).
- 8. H.P. Nilles, Phys. Reports **110**, 1 (1984).
- H.E. Haber and G.L. Kane, Phys. Reports 117, 75 (1987).
- 10. E. Witten, Nucl. Phys. **B188**, 513 (1981).
- S. Dimopoulos and H. Georgi, Nucl. Phys. **B193**, 150 (1981).
- 12. M. Dine, W. Fischler, and M. Srednicki, Nucl. Phys. **B189**, 575 (1981).
- 13. S. Dimopoulos and S. Raby, Nucl. Phys. **B192**, 353 (1981).

- 14. N. Sakai, Z. Phys. **C11**, 153 (1981).
- 15. R.K. Kaul and P. Majumdar, Nucl. Phys. **B199**, 36 (1982).
- 16. H. Goldberg, Phys. Rev. Lett. **50**, 1419 (1983).
- 17. J.R. Ellis et al., Nucl. Phys. **B238**, 453 (1984).
- 18. G. Jungman and M. Kamionkowski, Phys. Reports **267**, 195 (1996).
- 19. S. Dimopoulos, S. Raby, and F. Wilczek, Phys. Rev. **D24**, 1681 (1981).
- 20. W. J. Marciano and G. Senjanović, Phys. Rev. **D25**, 3092 (1982).
- 21. M.B. Einhorn and D.R.T. Jones, Nucl. Phys. **B196**, 475 (1982).
- 22. L.E. Ibanez and G.G. Ross, Phys. Lett. **B105**, 439 (1981).
- 23. N. Sakai, Z. Phys. C11, 153 (1981).
- 24. U. Amaldi, W. de Boer, and H. Furstenau, Phys. Lett. **B260**, 447 (1991).
- 25. P. Langacker and N. Polonsky, Phys. Rev. **D52**, 3081 (1995).
- 26. P. Fayet, Phys. Lett. **B64**, 159 (1976).
- 27. G.R. Farrar and P. Fayet, Phys. Lett. **B76**, 575 (1978).
- 28. H.E. Haber, Supersymmetry, Part I (Theory), this volume.
- 29. M. Carena, C. Grojean, M. Kado, and V. Sharma, *Higgs Bosons: Theory and Searches*, this volume.
- 30. J.-F. Grivaz, Supersymmetry, Part II (Experiment), in: 2010 Review of Particle Physics, K. Nakamura et al., (Particle Data Group), J. Phys. **G37**, 075021 (2010).
- 31. I. Hinchliffe et al., Phys. Rev. **D55**, 5520 (1997).
- 32. L. Randall and D. Tucker-Smith, Phys. Rev. Lett. **101**, 221803 (2008).
- 33. CMS Collab., Phys. Lett. **B698**, 196 (2011).
- 34. CMS Collab., Phys. Rev. Lett. **107**, 221804 (2011).
- 35. CMS Collab., Phys. Rev. **D85**, 012004 (2012).
- 36. C.G. Lester and D.J. Summers, Phys. Lett. **B463**, 99 (1999).
- 37. D.R. Tovey, JHEP **04**, 034 (2008).
- 38. A.H. Chamseddine, R. Arnowitt, and P Nath, Phys. Rev. Lett. 49, 970 (1982).
- 39. E. Cremmer et al., Nucl. Phys. **B212**, 413 (1983).
- 40. P. Fayet, Phys. Lett. **B70**, 461 (1977).

- M. Dine, A.E. Nelson, and Yu. Shirman, Phys. Rev. D51, 1362 (1995).
- 42. G.F. Giudice et al., JHEP **9812**, 027 (1998).
- 43. L. Randall and R. Sundrum, Nucl. Phys. **B557**, 79 (1999).
- 44. R. Arnowitt and P Nath, Phys. Rev. Lett. **69**, 725 (1992).
- 45. G.L. Kane *et al.*, Phys. Rev. **D49**, 6173 (1994).
- 46. P. Meade, N. Seiberg, and D. Shih, Prog. Theor. Phys. Supp. **177**, 143 (2009).
- 47. W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, and P.M. Zerwas, Phys. Rev. Lett. **83**, 3780 (1999).
- 48. A. Djouadi, J-L. Kneur, and G. Moultaka, Comp. Phys. Comm. **176**, 426 (2007).
- 49. C.F. Berger et al., JHEP **02**, 023 (2009).
- 50. H. Baer et al., hep-ph/9305342, 1993.
- 51. R.M. Barnett, H.E. Haber, and G.L. Kane, Nucl. Phys. **B267**, 625 (1986).
- 52. H. Baer, D. Karatas, and X. Tata, Phys. Lett. **B183**, 220 (1987).
- 53. J. Alwall, Ph.C. Schuster, and N. Toro, Phys. Rev. **D79**, 075020 (2009).
- 54. J. Alwall *et al.*, Phys. Rev. **D79**, 015005 (2009).
- 55. O. Buchmueller and N. Marrouche, *Universal mass limits* on gluino and third-generation squarks in the context of Natural-like SUSY spectra, arXiv:1304.2185 [hep-ph].
- 56. CDF Collab., Phys. Rev. Lett. **102**, 121801 (2009).
- 57. D0 Collab., Phys. Lett. **B660**, 449 (2008).
- 58. ATLAS Collab., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and $20.3~fb^{-1}$ of $\sqrt{s}=8~TeV$ proton-proton collision data, ATLAS-CONF-2013-047 (2013).
- 59. ATLAS Collab., Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb⁻¹ of \sqrt{s} =8 TeV with the ATLAS Detector., ATLAS-CONF-2013-061 (2013).
- 60. CMS Collab., Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV, CMS-PAS-SUS-13-012 (2013).

- 61. CMS Collab., Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV, CMS-PAS-SUS-12-024 (2012), arXiv:1305.2390 [hep-ex] accepted by PLB.
- 62. CMS Collab., Search for Supersymmetry in pp collisions at 8 TeV in events with a single lepton, multiple jets and b-tags, CMS-PAS-SUS-13-007 (2013),.
- 63. CMS Collab., JHEP **07**, 122 (2013).
- 64. ATLAS Collab., Phys. Lett. **B720**, 277 (2013).
- 65. D0 Collab., Phys. Rev. Lett. **99**, 131801 (2007).
- 66. ATLAS Collab., Search for long-lived stopped gluino R-hadrons decaying out-of-time with LHC collisions in 2011 and 2012 using the ATLAS detector, ATLAS-CONF-2013-057 (2013).
- 67. CMS Collab., Search for Stopped Heavy Stable Charged Particles in pp collisions at $\sqrt{s} = 7$ TeV, CMS-PAS-EXO-11-020 (2011).
- 68. CDF Collab., Phys. Rev. Lett. **107**, 042001 (2011).
- 69. ATLAS Collab., Search for massive particles in multijet signatures with the ATLAS detector in $\sqrt{s} = 8$ TeV pp collisions at the LHC, ATLAS-CONF-2013-091 (2013).
- 70. CMS Collab., Search for light- and heavy-flavor three-jet resonances in multijet final states at 8 TeV, CMS-PAS-EXO-12-049 (2012).
- 71. CMS Collab., Search for supersymmetry in hadronic final states with missing transverse energy using the variables α_T and b-quark multiplicity in pp Collisions at $\sqrt{s} = 8$ TeV, CMS-PAS-SUS-12-028 (2012), arXiv:1303.2985 [hep-ex] submitted to EPJC.
- 72. H1 Collab., Eur. Phys. J. **C71**, 1572 (2011).
- 73. CDF Collab., Phys. Rev. Lett. **105**, 081802 (2010).
- 74. D0 Collab., Phys. Lett. **B693**, 95 (2010).
- 75. ATLAS Collab., Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in at $\sqrt{s}=8$ TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053, (2013), arXiv:1308.2631[hep-ex] submitted to JHEP.
- 76. C. Boehm, A. Djouadi, Y. Mambrini Phys. Rev. D 61, 095006(2000).
- 77. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-02.1, http://lepsusy.web.cern.ch/lepsusy.
- 78. CDF Collab., Phys. Rev. **D82**, 092001 (2010).

- 79. D0 Collab., Phys. Lett. **B696**, 321 (2011).
- 80. CDF Collab., JHEP **10**, 158 (2012).
- 81. D0 Collab., Phys. Lett. **B665**, 1 (2008).
- 82. CDF Collab., Phys. Rev. Lett. **104**, 251801 (2010).
- 83. D0 Collab., Phys. Lett. **B674**, 4 (2009).
- 84. ATLAS Collab., Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb⁻¹ of p-p collisions at $\sqrt{s} = 8$ TeVwith the ATLAS detector, ATLAS-CONF-2013-024 (2013).
- 85. ATLAS Collab., Search for direct top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in $\sqrt{s}=8$ TeV pp collisions using 21 fb⁻¹ of ATLAS data, ATLAS-CONF-2013-037 (2013).
- 86. CMS Collab., Search for direct top squark pair production in the single lepton final state at $\sqrt{s}=8~TeV$, CMS-PAS-SUS-13-011, (2013), arXiv:1308.1586 [hep-ex] submitted to EJPC.
- 87. ATLAS Collab., Search for direct top squark pair production in final states with two leptons in $\sqrt{s} = 8$ TeV pp collisions using 20 fb⁻¹ of ATLAS data, ATLAS-CONF-2013-048 (2013).
- 88. ATLAS Collab., Search for pair-produced top squarks decaying into a charm quark and the lightest neutralinos with 20.3 fb⁻¹ of pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector at the LHC, ATLAS-CONF-2013-068 (2013).
- 89. ZEUS Collab., Eur. Phys. J. **C50**, 269 (2007).
- 90. CDF Collab., Phys. Rev. Lett. 103, 021802 (2009).
- 91. D0 Collab., Phys. Rev. **D87**, 052011 (2013).
- 92. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/01-03.1, http://lepsusy.web.cern.ch/lepsusy.
- 93. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-04.1, http://lepsusy.web.cern.ch/lepsusy.
- 94. CDF Collab., Search for trilepton new physics and chargino-neutralino production at the Collider Detector at Fermilab, CDF Note 10636 (2011).
- 95. D0 Collab., Phys. Lett. **B680**, 34 (2009).
- 96. ATLAS Collab., Search for direct-slepton and directchargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20

- fb^{-1} of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).
- 97. CMS Collab., Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006 (2013).
- 98. ATLAS Collab., Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 21 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-035 (2013).
- 99. ATLAS Collab., Search for electroweak production of supersymmetric particles in final states with at least two hadronically decaying taus and missing transverse momentum with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV, ATLAS-CONF-2013-028 (2013).
- 100. ATLAS Collab., Search for chargino and neutralino production in final states with one lepton, two b-jets consistent with a Higgs boson, and missing transverse momentum with the ATLAS detector in 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV pp collisions, ATLAS-CONF-2013-093 (2013).
- 101. CMS Collab., Search for electroweak production of charginos and neutralinos in final states with a Higgs boson in pp collisions at 8 TeV, CMS-PAS-SUS-13-017 (2013).
- 102. ATLAS Collab., Search for charginos nearly mass-degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-069 (2013).
- 103. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-05.1, http://lepsusy.web.cern.ch/lepsusy.
- 104. H. Dreiner *et al.*, Eur. Phys. J. **C62**, 547 (2009).
- 105. CDF Collab., Phys. Rev. Lett. **108**, 211804 (2012).
- 106. CMS Collab., Search for new physics in monojet events in pp collisions at $\sqrt{s} = 8$ TeV, CMS-PAS-EXO-12-048 (2012).
- 107. ATLAS Collab., Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 10 fb^{-1} of pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-147 (2012).
- 108. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-09.1, http://lepsusy.web.cern.ch/lepsusy.
- 109. CDF Collab., Phys. Rev. Lett. **104**, 011801 (2010).

- 110. D0 Collab., Phys. Rev. Lett. **105**, 221802 (2010).
- 111. ATLAS Collab., Phys. Lett. **B718**, 411 (2012).
- 112. CMS Collab., JHEP **03**, 111 (2013).
- 113. D0 Collab., Phys. Rev. **D86**, 071701 (2012).
- 114. CMS Collab., Phys. Lett. **B716**, 260 (2012).
- 115. ATLAS Collab., Search for supersymmetry in final states with jets, missing transverse momentum and a Z boson at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2012-152 (2012).
- 116. CDF Collab., Phys. Rev. **D88**, 031103 (2013).
- 117. CMS Collab., Phys. Lett. **B722**, 273 (2013).
- 118. D0 Collab., Phys. Rev. Lett. **101**, 111802 (2008).
- 119. ATLAS Collab, Phys. Rev. **D88**, 012001 (2013).
- 120. CDF Collab., Phys. Rev. **D85**, 011104 (2012).
- 121. ATLAS Collab., Phys. Lett. **B709**, 137 (2012).
- 122. ATLAS Collab., Expected Performance of the ATLAS experiment, Detector, Trigger and Physics, CERN-OPEN-2008-020 (2008).
- 123. CMS Collab., Search for New Physics in Events with Opposite-sign Leptons, Jets and Missing Transverse Energy, CMS-PAS-SUS-11-011 (2011).
- 124. ATLAS Collab., Search for supersymmetry in events with four or more leptons in 21 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-036 (2013).
- 125. CMS Collab., Search for RPV SUSY in the four-lepton final state, CMS-PAS-SUS-13-010 (2013).
- 126. ATLAS Collab., Search for long-lived, heavy particles in final states with a muon and a multi-track displaced vertex in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-092 (2013).
- 127. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/04-01.1, http://lepsusy.web.cern.ch/lepsusy.
- 128. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-09.2, http://lepsusy.web.cern.ch/lepsusy.
- 129. ATLAS Collab., Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets, and at Least One Tau Lepton in 21 fb⁻¹ of $\sqrt{s} = 8$ TeV Proton-Proton Collision Data with the ATLAS Detector, ATLAS-CONF-2013-026 (2013).

- 130. CMS Collab., A Search for Anomalous Production of Events with three or more leptons using 9.2 fb^{-1} of $\sqrt{s} = 8$ TeV CMS data, CMS-PAS-SUS-12-026 (2012).
- 131. CDF Collab., Phys. Rev. Lett. **110**, 201802 (2013).
- 132. LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, note LEPSUSYWG/02-10.1, http://lepsusy.web.cern.ch/lepsusy.
- 133. ATLAS Collab., A search for heavy long-lived sleptons using 16 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2013-058 (2013).
- 134. T. Falk, K.A. Olive, and M. Srednicki, Phys. Lett. **B339**, 248 (1994).
- 135. C. Arina and N. Fornengo, JHEP **11**, 029 (2007).
- 136. CDF Collab., Phys. Rev. Lett. **105**, 191801 (2010).
- 137. D0 Collab., Phys. Rev. Lett. **105**, 191802 (2010).
- 138. ATLAS Collab., Phys. Lett. **B723**, 15 (2013).
- 139. For a sampling of pre-LHC global analyses, see: O. Buchmueller et al., Eur. Phys. J. C71, 1722 (2011); E.A. Baltz and P. Gondolo, JHEP 0410, 052 (2004); B.C. Allanach and C.G. Lester, Phys. Rev. D73, 015013 (2006); R.R. de Austri et al., JHEP 0605, 002 (2006); R. Lafaye et al., Eur. Phys. J. C54, 617 (2008); S. Heinemeyer et al., JHEP 0808, 08 (2008); R. Trotta et al., JHEP 0812, 024 (2008); P. Bechtle et al., Eur. Phys. J. C66, 215 (2010).
- 140. For a sampling of recent post-LHC global analyses, see: M. Citron et al., Phys. Rev. D87, 036012 (2013);
 C. Strege et al., JCAP 1304 (2013) 013; A. Fowlie et al., Phys. Rev. D86, 075010 (2012); P. Bechtel et al., JHEP 1206, 098 (2012); O. Buchmueller et al., Eur. Phys. J. C72, 2243 (2012);
- 141. For a sampling of recent pMSSM analyses, see: M. Cahill-Rowley et al., Phys. Rev. D88, 035002 (2013) arXiv:1211.1981 [hep-ph]; C. Boehm et al., JHEP 1306, 113, (2013); S. AbdusSalam, Phys. Rev. D87, 115012 (2013); A. Arbey et al., Eur. Phys. J. C72, 2169 (2012); M. Carena et al., Phys. Rev. D86, 075025 (2012); S. Sekmen et al., JHEP 1202, 075 (2012);
- 142. Physics Summary Plots, ATLAS experiment, http://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots.
- 143. Supersymmetry Physics Results, CMS experiment, http://twiki.cern.ch/twiki/bin/view/CMSPUBlic/PhysicsResultsSUS.